Control Variates for the Metropolis-Hastings Algorithm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Norges Teknisk-naturvitenskapelige Universitet Control Variates for the Metropolis-hastings Algorithm Control Variates for the Metropolis-hastings Algorithm

We propose new control variates for variance reduction in the Metropolis–Hastings algorithm. We use variates that are functions of both the current state of the Markov chain and the proposed new state. This enable us to specify control variates which have known mean values for general target and proposal distributions. We develop the ideas for both the standard Metropolis–Hastings algorithm and...

متن کامل

The Metropolis-Hastings-Green Algorithm

1.1 Dimension Changing The Metropolis-Hastings-Green algorithm (as opposed to just MetropolisHastings with no Green) is useful for simulating probability distributions that are a mixture of distributions having supports of different dimension. An early example (predating Green’s general formulation) was an MCMC algorithm for simulating spatial point processes (Geyer and Møller, 1994). More wide...

متن کامل

Understanding the Metropolis-Hastings Algorithm

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...

متن کامل

Does Waste Recycling Really Improve the Multi-proposal Metropolis–hastings Algorithm? an Analysis Based on Control Variates

The waste-recycling Monte Carlo (WRMC) algorithm introduced by physicists is a modification of the (multi-proposal) Metropolis–Hastings algorithm, which makes use of all the proposals in the empirical mean, whereas the standard (multi-proposal) Metropolis–Hastings algorithm uses only the accepted proposals. In this paper we extend the WRMC algorithm to a general control variate technique and ex...

متن کامل

Improving on the Independent Metropolis-Hastings Algorithm

This paper proposes methods to improve Monte Carlo estimates when the Independent MetropolisHastings Algorithm (IMHA) is used. Our rst approach uses a control variate based on the sample generated by the proposal distribution. We derive the variance of our estimator for a xed sample size n and show that, as n tends to in nity, this variance is asymptotically smaller than the one obtained with t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scandinavian Journal of Statistics

سال: 2008

ISSN: 0303-6898,1467-9469

DOI: 10.1111/j.1467-9469.2008.00601.x